

Energy intelligence in buildings

Factor of success for decentralized energy generation and consumption

2014-03-21, Obernai, Johannes Hauck

Chapter 1: Framework and environment of energy

- European Legislation
- National Legislation
- Technology

EU targets for 2020 to tackle climate change and improve the energy system

EU 20-20-20 energy targets

Political targets to transform fossil-based energy systems

renewables

Development of consumer prices for electricity

Consumer prices for electricity in Germany and France

Conventional power supply system based on fossil fuels

Conventional Grid

Maximum voltage

High voltage

Mid voltage

Low voltage

information flow

Power supply system based on renewable energies

Smart Grid

Maximum voltage

High voltage

Mid voltage

Low voltage

How we can achieve these extensive and ambitious targets

Key elements in the new energy system

- Smart Grid
- High voltage system / Medium voltage system / Low voltage system
- Target: Managing the mix of renewable and conventional energies
- Task: Consumption oriented generation and generation oriented consumption
- Decentralised energy generation and consumption
- **PROSUMER** solutions (end customer as a **pro**ducer and con**sumer** of energy)
- Local usage of generated energy through storage
- Energy efficiency
- Innovative solutions for reducing energy consumption in all electrical products
- Energy management solutions for building and industrial applications

Target: Predictable, flexible and calculable energy system

In this energy system the smart building with its high energy consumption plays a very important role

In Germany and France about 40% of energy are consumed in buildings

German energy consumption

Possible applications in the smart building

- decentralised energy generation and consumption
- energy efficiency
- energy management
- building automation

Chapter 2: Requests to Smart Buildings

- Economy
- Technology

Local energy generation and usage offer the greatest cost savings

Economic target: – reduce energy consumption

- reduce energy imports from the public grid

To achieve the economic target the smart building needs an intelligent energy management system

Technology target: Sustainable optimisation of energy consumption and energy generation

- Analysis of local energy consumption
- Predictable energy consumption
- Building automation
- Flexible tariff management
- Analysis of local energy generation
- Predictable energy generation

Energy storage is absolutely necessary due to fluctuated energy

Technology target: Consumption oriented generation and generation oriented consumption

Chapter 3: Solutions for Smart Buildings

- Analysis of energy consumption and generation
- Predictable energy consumption and predictable energy generation
- Energy storage

Energy analysis and prediction are the basis for a better understanding of energy consumption

Analysis of energy consumption

- Detailed information about energy use and corresponding costs
- Analysis and evaluation of total energy consumption
- Comparison of singe days and weeks

Prediction of energy consumption

- Identification of reasons & importance of influences
- Correlation / recognition of pattern
- Individual recommendations for energy savings

Control by Building Automation

- Automated smart control of appliances
- Load shifting by time controlled or storage capable devices

The intelligent home

Efficient – intuitive – automatic – simple – safe

- with tebis KNX domovea

- Safety
- Energy efficiency
- Assisted living, AAL

. . . .

Local energy generation and consumption reduce significantly energy import from public grid

Generation of Photovoltaic energy

Generation of wind energy

Generation of CHP energy

Analysis of energy consumption

- Analysis and evaluation of different kinds of energy generation
- Visualisation of actual status of consumption and generation

20% of energy supply can be reduced

Prediction of energy consumption

- Prediction of generated energy for the next 3 days
- Load shifting of energy consumption to times of enery generation

30% of energy supply can be reduced

Target: Consumption oriented generation and generation oriented consumption

For the end customer the economical optimum will be reached by energy storage

- Excessive energy of local generation will be stored in battery
- Depending of state of charge (SOC) battery provides energy for local consumption

70% of energy supply can be reduced

Success factor energy intelligence for smart energy in smart buildings

Conclusion: The building functions as a micro grid

Application Smart Building

Hager Group Research and Application Centre in Blieskastel

First application for energy intelligence

- New Hager Group building with 3,000 m²
 - Offices, labs and workshops
- Energy consumption:1.4 million kWh per year
- Energy generation
 - Photovoltaic: 100 kWp
 - Combined heat and power unit:
 120 kW electrical energy and 180 kW thermal power
 - Wind: 50 kW
- Energy storage: 100 kWh
- First step: reducing energy import by 70%
- Second step: reducing energy import by 100%

Energy intelligence can be realised in local applications

Data - Cloud

- Service
- Meteorological data
- Tariff information
- Sharing point
- presence

Local application

- All applications of energy intelligence can be realised locally in Smart Building
 - Analysis
 - Prediction
 - Control
- Common access to information about
 - weather
 - utilities' tariffs
 - service
- Application: Single, independent buildings

Energy
intelligence
Analysis
Prediction

Control

Energy intelligence can be realised in Cloud applications

Energy - Cloud

- Analysis, Prediction
- Energy management
- Evaluation
- Service, Appliations
- Sharing point

Cloud applications

- Energy cloud take different tasks of energy intelligence
 - Analysis
 - Prediction
- Interface between Energy cloud and Building Automation
- Local Building Automation
 - Control of energy storage or electrical vehicles
- Energy cloud can be used as a network of spreaded buildings

Energy intelligence

Control

Conclusion

Conclusion: The building itself functions as both a micro grid and an active participant in the smart grid

The building at the heart of our future energy system

Thank you for your attention!

