TRĀNSNET BW

SMART GRID – VISION AND REALITY

DR.-ING. PAVEL ZOLOTAREV, SYSTEM OPERATION 21.03.2014, OBERNAI

Smart Grids and Transmission Networks

 DSO - Security of supply of its end-consumer and distributed generation management (Smart Grid)

- DSO Security of supply of its end-consumer and distributed generation management (Smart Grid)
- What about wind parks?

- DSO Security of supply of its end-consumer and distributed generation management (Smart Grid)
- Industrial loads? Back up power plants?

- DSO Security of supply of its end-consumer and distributed generation management (Smart Grid)
- Wouldn't it be nice to store wind?

- DSO Security of supply of its end-consumer and distributed generation management (Smart Grid)
- TSO Security of supply of the whole energy system
- Smart Grids must be applied in the global context!

TransnetBW - Short Profile

Smart Transmission

- Geographical area: 34.600 km²
- Length of transmission lines: 3.331 km
- 47 substations
- Peak load at 220-kV in 2013: 12.1 GW
- Yearly energy consumption: 67 TWh

Transmission System Operator

Index

1. Smart Grid – Optimistic Reality Check

2. Room for Improvement – Two Examples

3. A Vision – Work in Progress

4. Outlook

Smart Grid

"The conventional grid becomes a Smart Grid

Smart Grid - a Definition

380 kV/220 kV 110 kV 20 kV

Smart Grid

Smart Grid - a Definition

"The conventional **grid** becomes a Smart Grid, if it is upgraded with **communication**, **measurement**, **control**, automation and IT components. In result, "smart" means that the **network state can be observed in "real-time"**

Smart Grid

Smart Grid - a Definition

"The conventional grid becomes a Smart Grid, if it is upgraded with communication, measurement, control, automation and IT components. In result, "smart" means that the network state can be observed in "real-time" and there possibilities for feed-forward and feed-back control of the networks enabling the full usage of the existing transmission capacity."

BNetzA (2011), "Smart Grid" and "Smart Market" (own translation)

Grid

Sensors, Actuators and Communication

Control Concepts

Smart Transmission

Smart Transmission

- The European transmission networks have been smart for a long time and continue to become smarter
- Examples: automatic frequency control, real-time state estimation, real-time operational security analysis, European Awareness System, operational planning etc...

Smart Transmission Grid - Past and Present

PAGE 16 21/03/2014

PAGE 17 21/03/2014

PAGE 18 21/03/2014

Installed Renewable Capacity in Germany

Distributed Generation ≠ Regional

Installed PV-Capacity per Capita in 2012

Smart Grid: Grid Control Cooperation

Smart Transmission -Imbalance Netting

Smart Grid: Grid Control Cooperation

Smart Transmission -Imbalance Netting

- Grid Control Cooperation
 (Imbalance Netting, optimisation of dimensioning and costs)
- International
 Grid Control Cooperation (IGCC)
 (Imbalance Netting)

Example: Imbalances of Renewables in Germany

Imbalance Netting between Countries in GWh

Index

1. Smart Grid – Optimistic Reality Check

2. Room for Improvement – Two Examples

3. A Vision – Work in Progress

4. Outlook

- Trading requires standard products.
- For energy trade this means that the power plant production is not a continuous spline but a series of "steps"

Example 1: 1 Hour Energy Product

Power plants dispatch based on step-shaped contracts **decreases** the quality of the network frequency and therefore the **system security level**

Example 1: 1/2 Hour Energy Product

Power plants dispatch based on step-shaped contracts **decreases** the quality of the network frequency and therefore the **system security level**

Example 2: Cold Day in February

Relatively high wind and PV generation

Example 2: Cold Day in February

Relatively high wind and PV generation, still an **unplanned energy shortage**

market participants have not adapted the load forecast

PAGE 34 21/03/2014

Example 2: Cold Day in February

Relatively high wind and PV generation, still an **unplanned energy shortage**

market participants have not adapted the load forecast

Index

1. Smart Grid – Optimistic Reality Check

2. Room for Improvement – Two Examples

3. A Vision – Work in Progress

4. Outlook

Smart Grid – Simplified Information Flows

Current State

Measurements	 Generally, the TSOs have measurements of all relevant power plants and demand connected at high voltage level Estimation of the end-consumption is difficult due to dispersed generation
Aggregation	 Aggregation ("Virtual Power Plant") is state of the art in energy trade and power plant dispatch Demand and small power plants (biomass) are already providing system services
Forecasts	 Quality of forecasts highly depends on the flexibility given to the market participants In Germany - efforts to improve quality of forecast (rules to be fixed by the regulator)
Smart Meter	 Smart Meters are tested in pilot projects Benefit for the end-consumer is questionable and therefore the business model

Index

1. Smart Grid – Optimistic Reality Check

2. Room for Improvement – Two Examples

3. A Vision – Work in Progress

4. Summary and Outlook

Summary and Outlook

Smart Grid - an Outlook

- Smart Grid already exists at the TSO level for many years
- The German TSOs successfully operate a system with over
 70 GW of installed renewable capacity
- Biggest challenge and therefore the direction for further Smart
 Grid development is to bring back the information lost due
 to liberalisation and distributed generation

Grid

Sensors, Actuators and Communication

Control Concepts

